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A lifting theorem for compact symplectic manifolds 

M Crampint and P J McCarthyJ: 
t Faculty of Mathematics, The Open University, Walton Hall, Milton Keynes MK7 6AA, 
UK 
$ Department of Mathematics, Bedford College, University of London, Inner Circle, 
Regent’s Park, London NW1 4NS, UK 

Received 22 March 1983 

Abstract. It is shown that the Lie algebra of globally Hamiltonian vector fields on a 
compact symplectic manifold can be lifted to a Lie algebra of smooth functions on the 
manifold under Poisson bracket. This implies that any algebra of symmetries of a classical 
mechanical system described by such a manifold may be realised as an algebra of observ- 
ables (smooth functions). Parallels between lifting problems in classical and quantum 
mechanics are explored. 

In Hamiltonian mechanics, the relationship between canonical symmetries and con- 
stants of the motion is in most respects a very straightforward one. Using the 
representation of a mechanical system by means of a symplectic structure, that is, an 
even-dimensional manifold M with symplectic two-form SZ defined on it, one may set 
up a correspondence between observables (smooth functions on M )  and certain vector 
fields on M. A vector field X on M is said to be globally Hamiltonian if X JSZ is an 
exact one-form. The particular globally Hamiltonian vector field r corresponding to 
the Hamiltonian function h of the system, which is defined by 

r J fl= -dh, 

determines the dynamics of the system. We denote by r the map which associates 
with each observable f the globally Hamiltonian vector field defined by 

r ( f ) J f l = - d f .  

Then f is a constant of the motion (r(f) = 0) if and only if r ( f ) ( h )  = 0, and under 
thesi: circumstances r( f )  is a canonical symmetry: 

L.H(fjR = 0 and [m, ri = 0; 

thus r ( f )  generates transformations which permute the integral curves of r. 
vector fields: 

The Poisson bracket of observables corresponds under r to the Lie bracket of 

d{f, g}) = [.rr(f), r (g ) l .  

I f f ,  g are constants of the motion then so is {f, g}, and the corresponding symmetry 
is [ ~ ( f ) , r ( g ) ] .  Thus given a Lie algebra of constants of the motion of a classical 
mechanical system, under Poisson bracket (and one might as well include the Hamil- 
tonian function which will then be an element of the centre of the algebra), there is 
a corresponding Lie algebra of symmetries, under Lie bracket. 
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There is one complication in this scheme, and it is to the discussion of it that our 
paper is devoted. This complication is caused by the fact that to any two observables 
which differ by a constant function there corresponds one and the same globally 
Hamiltonian vector field. In other words, T is not an injective map, its kernel being 
the constant functions. Now one is usually faced with the situation that one knows a 
Lie algebra of symmetries of a system and wishes to infer something about the 
corresponding constants of the motion, rather than the other way about. Because of 
this uncertainty in the choice of an observable to correspond to a globally Hamiltonian 
vector field, it may not in fact be possible to choose the observables so that they form 
a Lie algebra even though they correspond to symmetries which do. The problem of 
finding under what conditions one may make a consistent choice of observables 
corresponding to elements of a Lie algebra of globally Hamiltonian vector fields so 
that the observables also form a Lie algebra is an example of a lifting problem, and 
one speaks of lifting the algebra of vector fields to an algebra of observables. 

Lifting problems occur elsewhere in physical contexts, the most familiar example 
being quantum mechanics. Here the problem arises because the phase space of a 
quantum mechanical system is, strictly speaking, the space of rays (one-dimensional 
subspaces) of a complex Hilbert space. A symmetry group will then act as a group 
of automorphisms of the space of rays, in other words, considered as an abstract 
group, it will have a ‘projective’ representation. The lifting problem is to find, if 
possible, a representation of the group by linear operators on the underlying Hilbert 
space which covers the projective representation, by making a consistent choice of 
linear operator for each projective one. 

It is perhaps worth reminding the reader of the difference between the PoincarC 
and the Galilean group in this respect. Every projective representation of the PoincarC 
group lifts; but this is not true for the Galilean group, and the obstruction to lifting 
may be identified as the mass of the system. Thus the lifting problem has some 
considerable physical significance. 

The purpose of this paper is to draw out the parallels between the lifting problems 
in the classical and quantum cases, and to prove that in the classical case of a compact 
symplectic space every Lie algebra of globally Hamiltonian vector fields lifts to a Lie 
algebra of observables. This result is of technical interest because its proof makes 
no use of any special properties of the algebra (it does not depend on analysing its 
central extensions, for example). Of course, the assumption of compactness usually 
enables one to draw some useful conclusions, and we shall discuss some quantum 
mechanical examples; but in many cases of interest in Hamiltonian mechanics the 
energy surfaces are compact, so there should be opportunities for the application of 
the result. 

We begin by describing the lifting problem in more detail, looking first at the 
quantum mechanical case since it is probably the more familiar. As we mentioned 
earlier, the phase space of a quantum mechanical system is usually taken to be the 
space I? of rays of a complex Hilbert space H ;  I? is given a metric (one minus the 
probability function), and the automorphism group of I? is, by Wigner’s theorem, 
isomorphic to the group G ( H )  of unitary operator rays of H. Thus, if U ( H )  denotes 
the group of unitary operators in H, G ( H )  is the space of orbits of U(1) (the group 
of complex numbers of unit modulus) in U ( H )  under the action U(1) x U ( H )  + U ( H )  
given by 
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This gives the exact sequence of homomorphisms (rr is the canonical projection) 

1 + U(1)+ U ( H )  f ir(H)+ 1. 

(Strictly speaking, U W )  should also include the anti-unitary operators, but in the 
present context it is safe to ignore them.) 

A topological group G is a symmetry group of f? if it acts as automorphisms on 
I?; that is, i f f?  carries a (without loss of generality, faithful) projective representation 
f: G + ~ ( H ) .  One usually attempts to reduce this nonlinear representation to a linear 
one by lifting f to a representation T :  G + U ( H )  by unitary operators in H. The 
problem, therefore, is to find a homomorphism T such that the diagram below 
commutes, where f is the given projective representation: 

To be more explicit: suppose that for each element g of G one chooses an element 
S ( g )  in U ( H )  such that r r (S (g ) )= f (g ) .  It will not necessarily be the case that 
S :  G + U ( H )  is an homomorphism; all one can be sure of is that 

S(g1)S,g2) =g(g1, gdS(g1g2) (1) 
for some complex number a(g1, g,) of unit modulus. On the other hand, if K is any 
map G + U(1) and T :  G + U ( H )  is defined by T ( g )  = K(g)S(g) then TOT = f also; 
moreover 

T(gdT(g,) = T k I ?  g,)T(g,gd 

T(gi, gz) = (K(gi)K(gz)/K (gigz))a(gi, gz). 

where T :  G x G + U (  1) is given by 

(2) 
The problem therefore, having chosen S,  is to find K such that 7(gl, gz) = 1 for all 
g l ,  g2E G. The one available general piece of information about (T comes from the 
associativity of group multiplication: a must satisfy, for all g l ,  gz, g3 E G, 

(3) 

These are the bare algebraic bones of the problem; in general G will be a topological 
group and all the maps concerned will be required to be continuous. It is possible to 
obtain general lifting results from the condition in equation (3) by exploiting assumed 
topological properties of G ;  we give an example which is instructive for what follows. 
Let G be a compact, connected, simply connected Lie group. It is known that in this 
case there is a globally defined continuous map S :  G + U ( H )  such that rr OS = p ;  a 
priori, however, one knows no more about this map than is contained in (1) and (3), 
with U continuous. Suppose that T: G + U ( H )  is defined as before. Since G is simply 
connected, there are well defined continuous functions (, 77 : G x G + R and 4 : G + R 
such that 

d g l ,  g2) = exp[it(gl, gdl ,  

d g 1 ,  gddg1g2, g3) = a(g1,gzg3)dgz, g3). 

T(glr g2) = exph(g1 ,  gdl ,  

77 ( a ,  g2) = Cb(g1) + 4 ( g 2 )  -4k1g2) +5(g1, g2) 

~ ( g )  = exp[i4(g)l. 
Then 
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and the associativity condition (3) reads 

[(gl, g2) +5(glg29 g3) = [ k l ,  g2g3) +5(g29 g3). (4) 
Since G is a compact Lie group there is an invariant measure /.L (Haar measure) 
defined on it: one may therefore integrate functions defined on G over G. Define 

4iP)=- l  S(g,h)dcL(h); 

then by integrating (4) with respect to g3 one finds that 

G 

t(g1, g2) + 4 ( g m )  = 4 (gr) + 4 (g2). 

So with this choice of 4 one achieves the desired aim, that t) = 0, and T = 1. Thus 
every projective representation of a compact, connected, simply connected Lie group 
lifts to a unitary representation. 

This argument demonstrates the usefulness of integration in solving lifting problems 
in the compact case. 

When such a method is not available the problem may be approached by analysing 
the properties of G. By using the projective representation f one may construct a 
new group E,  called a central extension of G by U(1), as follows: 

E ={(g, u ) ~ G x U ( H ) l ~ ( g ) = . r r ( u ) } .  

The relationship of E to G is much the same as the relationship between U ( H )  and 
f i ( H ) :  the map pl:  E + G by (g, U )  + g (projection onto the first factor of G x U ( H )  
restricted to E )  is a homomorphism of E onto G with kernel U(1); if moreover U(1) 
is injected into G by  the map 8: U(1) + E by 5 + (e ,  5 l), where e is the identity of 
G and 1 the identity of U ( H ) ,  then O(U(1)) lies in the centre of G ;  hence the term 
central extension. The relationship of E and G to the other groups in the problem 
is best summarised by the following commutative diagram, in which both rows are 
exact: 

l + U ' ( l ) T E - G + e .  P l  

(The map p2 is projection onto the first factor of G x U ( H )  restricted to E.) If there 
is a homomorphism q : G + E  such that ploq is the identity the central extension E 
of G is said to split; if this is the case then p204 is a lifting of f. Thus the lifting 
problem for G may be tackled by investigating the possible central extensions of G 
by U(1). In particular, if it is known that all such central extensions split it will follow 
that every projective representation of G lifts. 

One further example before we turn to classical mechanics is designed to show 
that it is sometimes possible to solve the lifting problem by proving a splitting result 
about the upper sequence. For example, suppose that H is finite dimensional. If 
dim H = n,  we may define a map (a section) s :  f i ( H )  + U ( H )  locally by 

( 5 )  

where U is any operator in the ray U^. This is well defined, continuous in a neighbour- 
hood of 1 E G ( H )  (the nth root being unambiguous, by continuity) and defines a local 

s ( L i )  = (det U )-""U, 
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homomorphism. That is, ( 5 )  gives a local splitting of the upper sequence. Now suppose 
that G is a compact, connected, simply connected group and f: G + f i ( H )  is con- 
tinuous. Thus T is a homeomorphism onto its image (because it is a con$nuous 
injection from a compact space to a Hausdorff one). In particular, T ( G )  c U ( H )  is 
simply connected, and so the local section defined by ( 5 )  may be extended globally 
over f(G) (using the same formula). The conclusion is that finite-dimensional 
projective representations of such groups G always lift to unitary representations. 

The interest of this example in the present context lies not so much in the result, 
but in the method, in which consideration of the top exact sequence leads to a lifting 
theorem. The result for compact symplectic manifolds to be proved below works in a 
similar way. 

The phase space of a classical mechanical system is usually taken to be a symplectic 
manifold (M, a). The (infinitesimal) automorphisms of such a system are described 
by the set X(M) of globally Hamiltonian vector fields, defined as the image of the 
set 9 ( M )  of smooth functions on M under the map T : 9 ( M )  + E(M) (where E(M) 
is the set of all smooth vector fields on M )  defined by 

~ ( f )  _I 0 = -df. 

9 ( M )  is a Lie algebra with respect to the Poisson bracket, defined by 

{f, g) = . r r ( f )g ,  
and X(M) is a Lie algebra under the usual bracket. Then T is a homomorphism 
T: 9 ( M )  + X(M). This gives the exact sequence (of Lie algebra homomorphisms) 

0 + R + 9 ( M )  ;X(M) + 0 

where R denotes the one-dimensional Lie algebra of constant functions on M. A Lie 
algebra Ce is a symmetry algebra of (M, 0) if there is an injective homomorphism 
i: Ce + X(M). One usually attempts to lift i to a homomorphism r :  Ce + 9 ( M )  since 
elements of 9 ( M )  are interpreted as observables. Defining 8 =  
{ (y ,  f )  E % @ S ( M ) l i ( y )  = T ( f ) } ,  one obtains a pair of exact sequences (of Lie algebra 
homomorphisms) 

TI 

O+R + 9 ( M )  +X(M)+O 

Ed Ip2 I; 
0 + R -5Z-3 + 0. 

P I  

Then the Lie algebra 8 is a central extension of % by R. As in the quantum mechanical 
case, this lifting problem can be tackled by finding all possible central extensions of 
Ce by R .  If all such extensions split, then every i can be lifted. However in certain 
circumstances the problem can be solved by concentrating on the upper exact sequence 
rather than the lower one. 

Assume henceforth that M is compact. Define a section s:  X(M) + 9 ( M )  (not 
necessarily a homomorphism) by (for example) the map (linear in X )  which assigns, 
to each X E X(M), the function f which vanishes at a given p o c M  and satisfies 
T( f ) = X .  Let U : X(M) X % ( M )  + 9 ( M )  be defined by 

--s (1x9 YI). U (X, Y )  = {s (XI, -s ( ( 6 )  
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By applying 7~ to (6) we quickly see that each image of U is a constant function. Any 
other section is given by a linear map t with t ( X )  = s(X) + k ( X )  for some linear 
function k : % ( M )  + R c 9 ( M ) ;  the corresponding map w : % ( M )  X Z ( M )  + F(M) is 
given by 

w(X,  Y i = U ( X ,  Y ) - k ( [ X ,  Y ] ) .  

We shall show 'that ( 6 )  already implies the existence of a linear function k such that 
w = 0; this will imply that the corresponding t defines a homomorphism, so that the 
upper sequence splits. To establish the required result, we need the following !emma. 

Lemma. L,et fl" = R A R A .  . . A fl (n factors) denote the volume 2n-form derived from 
R (where n = $dim M ) ,  and let f, g E F(M). Then {f, g}fl" is exact. 

Proof. Recall that X E X ( M )  implies that LxR = 0, where Lx means Lie derivative. 
Thus 

But the Lie derivative of the 2n-form g o "  is also given by 

L,(f,(gR") ~ ( f )  J d(gfl" 1 + d ( r ( f )  J gfl"). (8) 
Since the exterior derivative of any 2n-form vanishes, the first term on the right-hand 
side of (8) vanishes; (7) and (8) then give 

{f, g}R" = d(7i(f) Jgfl"). 

Now we apply the lemma to (6j, denoting JMR" by V. Integrating (6) against fl", 
we obtain 

because the first term goes out by exactness. So, choosing the linear function 
k : % ( M )  + R given by 

k(X) = -V-' JM S (,Y)R" 

we get w =0,  so t is a homomorphism, so the upper sequence splits. This gives us 
the following theorem. 

Theorem. For any compact symplectic manifold (M, R), the exact sequence 

0 + R + 9 ( M )  + E"() + 0 

splits. 

This has the consequence that, for any classical mechanical system described by 
a compact symplectic manifold, any symmetries represented by a subalgebra of the 
automorphism algebra E ( M )  may be represented by an isomorphic algebra of observ- 
ables under Poisson bracket. 


